STATISTIK EKONOMI - Distribusi sampling
Distribusi Sampling
1. Pendahuluan
· Bidang Inferensia Statistik membahas generalisasi/penarikan kesimpulan dan prediksi/ peramalan. Generalisasi dan prediksi tersebut melibatkan sampel/contoh, sangat jarang menyangkut populasi.
· Sensus = pendataan setiap anggota populasi
· Sampling = pendataan sebagian anggota populasi = penarikan contoh = pengambilan sampel
· Pekerjaan yang melibatkan populasi tidak digunakan, karena:
1. mahal dari segi biaya dan waktu yang panjang
2. populasi akan menjadi rusak atau habis jika disensus
misal : dari populasi donat ingin diketahui rasanya, jika semua
donat dimakan, dan donat tidak tersisa, tidak ada yang dijual?
· Sampel yang baik ® Sampel yang representatif
· Beda antara Statistik Sampel Vs Parameter Populasi? perhatikan tabel berikut:
Ukuran/Ciri | Parameter Populasi | Statistik Sampel |
Rata-Rata | m : myu | |
Selisih 2 Rata-rata | : nilai mutlak | : nilai mutlak |
Standar Deviasi = Simpangan Baku | s : sigma | S |
Varians = Ragam | s² | s² |
Proporsi | p : phi atau p | |
Selisih 2 proporsi | : nilai mutlak | : nilai mutlak |
Sampel yang baik diperoleh dengan memperhatikan hal-hal berikut :
1. keacakannya (randomness)
2. ukuran
3. teknik penarikan sampel (sampling) yang sesuai dengan kondisi atau sifat populasi
Sampel Acak = Contoh Random ® dipilih dari populasi di mana setiap anggota populasi memiliki peluang yang sama terpilih menjadi anggota ruang sampel.
· Beberapa Teknik Penarikan Sampel :
a. Penarikan Sampel Acak Sederhana (Simple Randomized Sampling)
Pengacakan dapat dilakukan dengan : undian, tabel bilangan acak, program komputer.
b. Penarikan Sampel Sistematik (Systematic Sampling)
Tetapkan interval lalu pilih secara acak anggota pertama sampel
Contoh : Ditetapkan interval = 20
Secara acak terpilih : Anggota populasi ke-7 sebagai anggota ke-1 dalam sampel maka :
Anggota populasi ke-27 menjadi anggota ke-2 dalam sampel
Anggota populasi ke-47 menjadi anggota ke-3 dalam sampel, dst.
c. Penarikan Sampel Acak Berlapis (Stratified Random Sampling)
Populasi terdiri dari beberapa kelas/kelompok. Dari setiap kelas diambil sampel secara acak.
Perhatikan !!!!
Antar Kelas bersifat (cenderung) berbeda nyata (heterogen). Anggota dalam suatu kelas akan (cenderung) sama (homogen).
Contoh :
Dari 1500 penumpang KA (setiap kelas memiliki ukuran yang sama) akan diambil 150 orang sebagai sampel, dilakukan pendataan tentang tingkat kepuasan, maka sampel acak dapat diambil dari :
Kelas Eksekutif : 50 orang
Kelas Bisnis : 50 orang
Kelas Ekonomi : 50 orang
d. Penarikan Sampel Gerombol/Kelompok (Cluster Sampling)
Populasi juga terdiri dari beberapa kelas/kelompok
Sampel yang diambil berupa kelompok bukan individu anggota
Perhatikan !!!!
Antar Kelas bersifat (cenderung) sama (homogen). Anggota dalam suatu kelas akan (cenderung) berbeda (heterogen).
Contoh :
Terdapat 40 kelas untuk tingkat II Jurusan Ekonomi-GD, setiap kelas terdiri dari 100 orang. Populasi mahasiswa kelas 2, Ekonomi-UGD = 40 ´ 100 = 4000.
Jika suatu penelitian dilakukan pada populasi tersebut dan sampel yang diperlukan = 600 orang, dilakukan pendataan mengenai lama waktu belajar per hari maka sampel dapat diambil dari 6 kelas.... Dari 40 kelas, ambil secara acak 6 kelas.
e. Penarikan Sampel Area (Area Sampling)
Prinsipnya sama dengan Cluster Sampling.
Pengelompokan ditentukan oleh letak geografis atau administratif.
Contoh : Pengambilan sampel di daerah JAWA BARAT, dapat dilakukan dengan memilih secara acak KOTAMADYA tempat pengambilan sampel, misalnya terpilih, Kodya Bogor, Sukabumi dan Bandung,
Sampel acak menjadi dasar penarikan sampel lain. Selanjutnya, pembahasan akan menyangkut Penarikan Sampel Acak.
· Penarikan Sampel Acak dapat dilakukan dengan 2 cara, yaitu :
a. Penarikan sampel tanpa pemulihan/tanpa pengembalian : setelah didata, anggota sampel tidak dikembalikan ke dalam ruang sampel
b. Penarikan sampel dengan pemulihan : bila setelah didata, anggota sampel dikembalikan ke dalam ruang sampel.
· Berdasarkan Ukurannya, maka sampel dibedakan menjadi :
a. Sampel Besar jika ukuran sampel (n) ³ 30
b. Sampel Kecil jika ukuran sampel (n) < 30
Distribusi Penarikan Sampel = Distribusi Sampling
· Jumlah Sampel Acak yang dapat ditarik dari suatu populasi adalah sangat banyak.
· Nilai setiap Statistik Sampel akan bervariasi/beragam antar sampel.
· Suatu statistik dapat dianggap sebagai peubah acak yang besarnya sangat tergantung dari sampel yang kita ambil.
· Karena statistik sampel adalah peubah acak maka ia mempunyai distribusi yang kita sebut sebagai : Distribusi peluang statistik sampel = Distribusi Sampling = Distribusi Penarikan Sampel
2. Distribusi Sampling Rata-Rata
Beberapa notasi :
n : ukuran sampel N : ukuran populasi
: rata-rata sampel m : rata-rata populasi
s : standar deviasi sampel s :standar deviasi populasi
: rata-rata antar semua sampel : standar deviasi sampel
2.1 Distribusi Sampling Rata-rata Sampel Besar
Dalil 1
JIKA
Sampel: ü
berukuran = n ³ 30 ý diambil DENGAN PEMULIHAN dari
rata-rata = þ
ì Populasi berukuran = N
í Terdistribusi NORMAL
î Rata-rata = m ; simpangan baku = s
MAKA
Distribusi Rata-rata akan mendekati distribusi Normal dengan :
= m dan dan nilai
Dalil 2
JIKA
Sampel: ü
berukuran = n ³ 30 ý diambil TANPA PEMULIHAN dari
rata-rata = þ
ì Populasi berukuran = N
í Terdistribusi NORMAL
î Rata-rata = m ; simpangan baku = s
MAKA
Distribusi Rata-rata akan mendekati distribusi Normal dengan :
= m dan dan nilai
· disebut sebagai FAKTOR KOREKSI populasi terhingga.
· Faktor Koreksi (FK) akan menjadi penting jika sampel berukuran n diambil dari populasi berukuran N yang terhingga/ terbatas besarnya
· Jika sampel berukuran n diambil dari populasi berukuran N yang sangat besar maka FK akan mendekati 1 ® , hal ini mengantar kita pada dalil ke-3 yaitu
DALIL LIMIT PUSAT = DALIL BATAS TENGAH = THE CENTRAL LIMIT THEOREM
Dalil 3 DALIL LIMIT PUSAT
JIKA
Sampel: ü
berukuran = n ý diambil dari
rata-rata = þ
ì Populasi berukuran = N yang BESAR
í distribusi : SEMBARANG
î Rata-rata = m ; simpangan baku = s
MAKA
Distribusi Rata-rata akan mendekati distribusi Normal dengan :
= m dan dan nilai
· Dalil Limit Pusat berlaku untuk : - penarikan sampel dari populasi yang sangat besar,
- distribusi populasi tidak dipersoalkan
· Beberapa buku mencatat hal berikut : Populasi dianggap BESAR jika ukuran sampel
KURANG DARI 5 % ukuran populasi atau
Dalam pengerjaan soal DISTRIBUSI SAMPLING RATA-RATA perhatikan asumsi-asumsi dalam soal sehingga anda dapat dengan mudah dan tepat menggunakan dalil-dalil tersebut!
Contoh 1:
PT AKUA sebuah perusahaan air mineral rata-rata setiap hari memproduksi 100 juta gelas air mineral. Perusahaan ini menyatakan bahwa rata-rata isi segelas AKUA adalah 250 ml dengan standar deviasi = 15 ml. Rata-rata populasi dianggap menyebar normal.
1. Jika setiap hari diambil 100 gelas AKUA sebagai sampel acak DENGAN
PEMULIHAN, hitunglah :
a. standard error atau galat baku sampel tersebut?
b. peluang rata-rata sampel akan berisi kurang dari 253 ml?
2. Jika sampel diperkecil menjadi 25 gelas, hitunglah :
a. standard error atau galat baku sampel tersebut?
b. peluang rata-rata sampel akan berisi lebih dari 255 ml?
1. Diselesaikan dengan DALIL 1 ® karena PEMULIHAN
Diselesaikan dengan DALIL 3 ® karena POPULASI SANGAT BESAR
N = 100 000 000 = m = 250 s = 15 n = 100
P( < 253) = P(z < ?)
GALAT BAKU =
Jadi P( < 253) = P(z < 2.0) = 0.5 + 0.4772 = 0.9772
2. Diselesaikan dengan DALIL 3 ® karena POPULASI SANGAT BESAR
N = 100 000 000 = m = 250 s = 15 n = 25
P( > 255) = P(z > ?)
GALAT BAKU =
Jadi P( > 255 ) = P(z > 1.67) = 0.5 - 0.4525 = 0.0475
Contoh 2 :
Dari 500 mahasiswa FE-GD diketahui rata-rata tinggi badan = 165 cm dengan standar deviasi = 12 cm, diambil 36 orang sebagai sampel acak. Jika penarikan sampel dilakukan TANPA PEMULIHAN dan rata-rata tinggi mahasiswa diasumsikan menyebar normal, hitunglah :
a. galat baku sampel?
b. peluang sampel akan memiliki rata-rata tinggi badan kurang dari 160 cm?
Diselesaikan dengan DALIL 2 ® TANPA PEMULIHAN
N = 500 = m = 165 s = 12 n = 36
Catatan ® Dalil Limit Pusat tidak dapat digunakan
P(< 160) = P(z < ?)
FK =
GALAT BAKU x FK = = 2 x 0.964... = 1.928...
P(< 160) = P(z < -2.59) = 0.5 - 0.4952 = 0.0048
2.2 Distribusi Sampling Rata-rata Sampel Kecil
DISTRIBUSI t
· Distribusi Sampling didekati dengan distribusi t Student = distribusi t (W.S. Gosset).
· Lihat Buku Statistika-2, hal 177
Distribusi-t pada prinsipnya adalah pendekatan distribusi sampel kecil dengan distribusi normal.
Dua hal yang perlu diperhatikan dalam Tabel t adalah 1. derajat bebas (db)
2. nilai a
Derajat bebas (db) = degree of freedom = v = n - 1.
n : ukuran sampel.
· Nilai a adalah luas daerah kurva di kanan nilai t atau
luas daerah kurva di kiri nilai -t
· Nilai a ® 0.1 (10%) ; 0.05 (5%) ; 0.025(2.5%) ; 0.01 (1%) ; 0.005(0.5%)
Nilai a terbatas karena banyak kombinasi db yang harus disusun!
· Kelak Distribusi t akan kita gunakan dalam PENGUJIAN HIPOTESIS
· Pembacaan Tabel Distribusi-t
Misalkan n = 9 ® db = 8; Nilai a ditentukan = 2.5% di kiri dan kanan kurva
t tabel (db, a) = t tabel(8; 0.025) = 2.306
Jadi t = 2.306 dan -t = -2.306
2.5% 95 % 2.5%
-2.306 0 2.306
Arti Gambar di atas nilai t sampel berukuran n = 9, berpeluang 95% jatuh dalam selang
-2.306 < t < 2.306.
Peluang t >2.306 = 2.5 % dan Peluang t < -2.306 = 2.5 %
Coba cari nilai t tabel untuk beberapa nilai db dan a yang lain!
· Perbedaan Tabel z dan Tabel t
Tabel z ® nilai z menentukan nilai a
Tabel t ® nilai a dan db menentukan nilai t
· Dalam banyak kasus nilai simpangan baku populasi (s) tidak diketahui, karenanya nilai s diduga dari nilai simpangan baku sampel (s)
Dalil 4
JIKA
Sampel: ü
ukuran KECIL n < 30 ý diambil dari
rata-rata = simp. baku = s þ
ì Populasi berukuran = N
í terdistribusi : NORMAL
î Rata-rata = m
MAKA
Distribusi Rata-rata akan mendekati distribusi-t dengan :
= m dan dan nilai
pada derajat bebas = n-1 dan suatu nilai a
Contoh 3 :
Manajemen PT JURAM menyatakan bahwa 95% rokok produksinya rata-rata mengandung nikotin 1.80 mg, data tersebar normal. Yayasan Konsumen melakukan pengujian nikotin terhadap 9 batang rokok dan diketahui rata-rata sampel = 1.95 mg nikotin dengan standar deviasi = 0.24 mg. Apakah hasil penelitian Yayasan Konsumen mendukung pernyataan Manajemen PT JURAM?
Jawab : 95 % berada dalam selang ® berarti 5 % berada di luar selang;
2.5 % di kiri t dan 2.5% di kanan t
a = 2.5 % = 0.025
n = 9 ® db = n - 1 = 8
t tabel (db, a) = t-tabel(8; 0.025) = 2.306
Jadi 95 % berada dalam selang -2.306 < t < 2.306
Nilai t-hitung = ? m = 1.80 n = 9 = 1.95 s = 0.24
=
Nilai t hitung = 1.875 berada dalam selang -2.306 < t < 2.306
jadi hasil penelitian Yayasan Konsumen masih sesuai dengan pernyataan manajemen PT JURAM.
2.3 Distribusi Sampling Bagi Beda 2 Rata-rata
Dalil 5
JIKA
Dua (2) Sampel ü
berukuran dan ý diambil dari
rata-rata = dan þ ì Dua (2) Populasi berukuran BESAR
í Rata-rata dan
î Ragam dan
MAKA
Distribusi Rata-rata akan mendekati distribusi Normal dengan :
dan standard error = dan
nilai z
· Beda atau selisih 2 rata-rata = ® ambil nilai mutlaknya!
· Melibatkan 2 populasi yang BERBEDA dan SALING BEBAS
· Sampel-sampel yang diambil dalam banyak kasus (atau jika dilihat secara akumulatif) adalah sampel BESAR
Contoh 4:
Diketahui rata-rata IQ mahasiswa Eropa = 125 dengan ragam = 119 sedangkan rata-rata IQ mahasiswa Asia = 128 dengan ragam 181. diasumsikan kedua populasi berukuran besar
Jika diambil 100 mahasiswa Eropa dan 100 mahasiswa Asia sebagai sampel, berapa peluang terdapat perbedaan IQ kedua kelompok akan kurang dari 2?
Jawab :
Populasi
Parameter | populasi ke-1 (Mhs. Eropa) | populasi ke-2 (Mhs. Asia) |
Rata-rata (m) | 125 | 128 |
Ragam (s²) | 119 | 181 |
Beda 2 Rata-rata = =
Sampel : = 100 = 100
P( <2 ) = P ( z < ?)
P(z<-0.58) = 0.5 - 0.2190 = 0.2810
selesai
0 Response to "STATISTIK EKONOMI - Distribusi sampling"
Post a Comment